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Beyond curating the dataset, we do not
use this metadata for representation Figure 7 (Ablation Study): Average score without and with dubs in training,
learning. showing both the best overall model and the best per-task among our trained
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tecture depth. Figure 8 (SOTA Comparison): Models trained with our approach compare favor-

ably to state-of-the-art results on a variety of audio tasks, and LVU video tasks.
Our training objective for minibatch of video v and audio a is given below in Eq. (1) Ours (Best) is per-task best score.
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N B Figure 9 (Synthetic Counterfactual Pair Pipeline): We also propose a pipeline to
Z ( (Up, as) + £i(vs, ap)) (2) produce synthetic counterfactual pairs from input video content (e.g. videos from

Figure 2 (Our Approach, Dubbed Audio): Movie dubs contain diverse audiovisual = LVU). This combines speech recognition, translation, alignment, voice conver-
scenes, with varied speech content while preserving scene semantics. We lever- B B sion, and audio matching and mixing together, allowing experimenting with syn-
age these to learn robust audiovisual representations. Lo = ;gi(%’”s)’ La = ;gi(%’“s) ) thetic counterfactual pairs openly and at scale.



